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This study is concerned with the water coning phenomenon that takes place around production wells of 
hydrocarbon reservoirs. In this paper, the development of artificial neural networks to predict the water 
saturation buildup around vertical and horizontal wells with a good level of accuracy is described. In 
the development of expert systems, it is assumed that water encroachment originates from an active 
aquifer which is located under the hydrocarbon reservoir (reservoir with bottom water drive). A high-
fidelity numerical model is utilized in generating training data sets that are used in structuring and 
training the artificial neural networks. The artificial expert systems that are developed in this paper are 
universal and are capable of predicting the change of water saturation around the wellbore as a 
function of time and the prediction process is faster than a reservoir simulator and requires less data, 
which saves time and effort. With the help of these models, it will be possible to predict the position of 
high water saturation zones around the wellbore ahead of time so that remedial actions such as closing 
the perforations that produce the water can be implemented on a timely basis. 
 
Key words: Bottom water drive, water coning, neural network, water saturation, vertical well, horizontal well. 

 
 
INTRODUCTION 
 
Many hydrocarbon reservoirs contain an active water 
aquifer. The drilled wells are always completed to 
produce only hydrocarbons. As oil production continues, 
water starts to appear in the wellbore. This water is 
undesirable as its presence around the wellbore 
decreases the well productivity and needs more facilities 
to be handled, treated and disposed of at the  surface 
resulting in extra investments and operating costs. The 
height of the water cone stops increasing if the upward 
dynamic flow forces become equal to the downward 
gravitational forces. The water will be produced once the 
height of the water reaches the wellbore. By continuing to 

produce the hydrocarbon with water, formation around 
the wellbore will be saturated with water in the shape of a 
cone, a phenomenon that is referred to as water coning. 
This study analyzes the water coning phenomenon. The 
water coning behavior has significant importance in 
hydrocarbon production, and the ability to predict its 
future behavior will improve and help in better managing 
reservoirs experiencing water encroachment. The 
behavior of the water coning in an oil reservoir is 
predicted successfully using Artificial Neural Networks 
(ANN) by predicting the change of the water saturation 
distribution in the reservoir over time,  and  the  prediction 
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process is faster than a reservoir simulator and 
requires less data, which saves time and effort. The 
developed neural networks were designed to be 
used for vertical and horizontal wells in 
communication with a bottom water aquifer. These 
developed neural networks can be useful in 
optimizing production by finding the optimum 
perforation interval or the optimum production rate to 
delay the water production. 

The first paper discussed the water coning 
phenomenon and its physics was done by Muskat 
and Wyckoff (1935). Muskat and Wyckoff (1935) 
indicated that some of the factors that affect the 
water coning are production rate and length of 
perforated interval. Others performed numerical 
studies on the effects of various parameters on 
water coning in vertical wells (Blades and Stright, 
1975; Byrne and Morse, 1973; Mungan, 1975). Also, 
Kuo (1983) studied the effects of various parameters 
on water coning in vertical wells, and developed 
correlations to predict critical rate, breakthrough time, 
and watercut after water production. Yang and 
Wattenbarger (Yang and Wattenbarger, 1991) studied 
the water coning effects in vertical and horizontal 
wells and developed a method to calculate the 
critical rate, break- through time, and the water-oil 
ratio after breakthrough. Van (1994)  investigated 
the water coning behavior for a fractured reservoir in a 
vertical well and studied various parameters and 
their effects on water coning. Helle and Bhatt (2002) 

developed artificial neural networks that predict the 
underground fluids (water, oil and gas) and their 
partial saturation directly from the well logs. Shokir 
(2004) presented new artificial neural networks that 
predict water saturation in shaly formation using the 
well log data and the core data as the inputs. Al-
Bulushi et al. (2009) developed artificial neural 
network based models to predict water saturation 
from well log data and core data. Mahmoudi and 
Mahmoudi (2014) developed artificial neural network 
that predicts porosity and water saturation of an 
Iranian oil field using well logs as an input data. 
Zendehboudi et al. (2014) developed a hybrid artificial 
neural network with particle swarm optimization to 
estimate breakthrough time and critical production 
rate for fractured system. Hamada et al. (2015) used 
neural network, optimized by particle swarm 
optimization, to determine the parameters of 
Archie’s formula, and then use the formula to 
calculate water saturation. Finally, Gholanlo et al. 
(2016) used radial basis function neural network 
improved by genetic algorithm to predict formation 
water saturation using conventional well-logging data. 
Gharib et al. (2018) developed artificial neural 
network to predict water saturation and porosity for 
shaly sand using core and log data. Baziar et al. 
(2018) performed a comparative study using four 
intelligent methods to determine water saturation in a 
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tight gas sandstone reservoir and the methods are 
support vector machine, multilayer perceptron neural 
network, decision tree forest, and tree boost. 
Alimoradi et al. (2011) pointed out that one of the 
most important parameters in reservoir 
characterization procedure is water saturation, and 
the aim of this study is the future prediction 
performance of water saturation. 
 
 

MODELS DEVELOPMENT 
 

Numerical model 
 

Data used to train the artificial neural networks were generated 
from a numerical reservoir simulation model. Two reservoir 
numerical models were implemented in radial and rectangular 
coordinates. The reservoir properties are assumed to be 
homogeneous and isotropic. In terms of fluid properties, the 
reservoir conditions are assumed to be above the 
bubblepoint pressure to ensure that no free gas is present 
in the reservoir. Furthermore, capillary forces were ignored 
assuming no transition zone. The reservoirs are assumed to 
be horizontal with uniform thicknesses. The radial reservoir 
model was used to generate data for vertical wells and the 
rectangular reservoir model was used to generate data for 
horizontal wells. The gridding for the radial system was in 
three dimensions, where the number of grid blocks was 
30×1×25. The thickness of all the grid blocks is equal and 
the spacing of grids in the r-direction was designed according 
to the following equation: 
 

                                                             (1) 
 

The rectangular reservoir gridding was 25×25×15 with ∆x = ∆y = 
61 m. The reservoir properties for the radial and the rectangular 
models are tabulated in Tables 1 and 2. For the vertical well 
scenario, six key parameters were selected to be changed to 
create different oil reservoirs. The parameters with their ranges 
are shown in Table 3 for the vertical well scenarios and in Table 
4 for the horizontal well scenarios. 
 

 
Artificial neural network vertical well scenario 
 

A total of 233 data sets were generated randomly.  Each 
combination was used to create a new reservoir model. All 
of the runs were designed for 10 years. The water saturation 
data, for all the blocks as generated by the simulation runs, 
were collected and prepared for the ANN training process. 
The ANN used for training is a feedforward network. The 
principal inputs are six parameters, which are: 
 

(1) Oil density (ρo), 

(2) Oil viscosity (µo), 

(3) Vertical permeability (kv), 

(4) Total liquid flow rate (qL), 

(5) Reservoir thickness (h), 
(6) Open interval to the flow (hp). 
 

The outputs are the water saturation values for all the 
blocks in the reservoir model at the end of each year. The 
233 scenarios were divided into three sets; 210 scenarios 
were used for training,  11  for  validation  and  12  for  blind  
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Table 1. Reservoir properties for the radial system. 
 

Porosity (φ) 0.25 

kr , m
2
 500×10

-15
 

Reservoir radius (re), m 1,829 

Oil formation volume factor, Rm
3
/Sm

3
 1.0 

Oil compressibility (co), MPa
-1

 145×10
-6

 

Initial pressure (pi), MPa 34.5 

Temperature, °C 54 

Initial oil saturation (Soi) 1.00 

 
 
 

Table 2. Reservoir properties for the rectangular system. 
 

Porosity (φ) 0.25 

kx, m
2
 500×10

-15
 

ky , m
2
 500×10

-15
 

Reservoir length, m 1,524 

Reservoir width, m 1,524 

Oil formation volume factor, Rm
3
/Sm

3
 1.0 

Oil compressibility (co), MPa
-1

 145×10
-6

 

Initial pressure (pi), MPa 34.5 

Temperature, °C 54 

Initial oil saturation (Soi) 1.00 

 
 
 

Table 3. The selected reservoir properties were changed within their ranges for the vertical well 
study. 
 

S/N Parameter Range 

1 Oil density (ρo), kg/m
3
 769 - 929 

2 Oil viscosity (µo), cp 1 - 10 

3 Vertical permeability (kv ), m
2
 5×10

-15 
- 500×10

-15
 

4 Total liquid fl w rate (qL), m
3
/Day 79.5 - 1,590 

5 Reservoir thickness (h), m 7.6 - 76 

6 open to fl w interval of pay zone (hp), m 0.04 - 0.96 h 

 
 
 
 
testing. Training and validation data are used in the training of 
the ANN and the testing data are only introduced to the 
network after the end of the training process to test the new 
ANN. Training the neural network started by including all water 
saturation values for all the blocks of each reservoir, which 
will produce a network that can predict the water saturation 
for the entire reservoir. However, this did not result in a 
capable network that could predict the water saturation values 
with a good level of accuracy. The next trial was to reduce the 
amount of data to simplify the problem for the neural network, 
and at the same time not to generate a large catalog of 
neural networks. The volume of data was reduced more to 
simplify the problem by taking the data for only one layer 

instead of the 25 layers, but these efforts were not successful 
once again. Then again, the data was reduced by taking the 
data of a single layer and considering only the 6 blocks. This 
time, a good network was generated and the absolute error 
was less than 10% for all the predicted water saturation 
values. The absolute error is calculated using the following 
equation: 

 
Error = |Sw − Sw (ANN)|                                (2) 

 
After succeeding in designing a satisfactory network, the goal 
now is to increase the complexity of the problem and reduce 
the number  of  the  networks  needed  to  predict  the  water  
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Table 4. The selected reservoir properties were changed within their ranges for the horizontal well study. 
 

S/N Parameter Range 

1 Oil density (ρo), kg/m
3
 769 - 929 

2 Oil viscosity (µo), cp 1 - 10 

3 Vertical permeability (kv ), m
2
 5×10

-15 
- 500×10

-15
 

4 Total liquid fl w rate (qL), m
3
/Day 79.5 - 1,590 

5 Reservoir thickness (h), m 4.6 - 73 

6 Depth of the horizontal well from top of formation (hd), m 0.067 - 0.53 h 

7 Length of the horizontal well (hL), m 183 - 1,036 

 
 
 
saturation for the reservoir. 

The complexity was increased by including the data for the 
10 years and not only for one year. The produced networks 
were good. Increasing the number of blocks to 16 blocks was 
tried, but the efforts were not successful. At the end, 25 networks 
were considered, where each network predicts the water 
saturation for each layer at the end of each year for 10 years. 
 
 

 
Horizontal well scenario 

 
A total of 314 combinations were generated randomly and for 
each combination, a reservoir was created. The horizontal well 
was always placed in the center of the square reservoir. This 
created a symmetry, which reduces the amount of data to be 
considered, and in return, will reduce the time needed to train 
the neural network. 

After running the numerical simulation for all the 314 
reservoirs for 10 years, water saturation data was collected and 
prepared for training the neural networks. 

The input list required to generate the blocks’ water 
saturations as outputs, contains seven parameters, which are: 

 

(1) Oil density (ρo), 

(2) Oil viscosity (µo), 

(3) Vertical permeability (kv), 

(4) Total liquid flo w rate (qL), 

(5) Reservoir thickness (h), 
(6) Depth of the horizontal well (hd), 

(7) Length of the horizontal well (hL). 

 

The data collected was only from the vertical plane (x-z 
plane) which contains the horizontal well. The water saturation 
for each block at the end of each year was collected. Training 
the neural network using the water saturation values for the 
blocks in a single column, produced 13 different neural 
networks. The data for the 314 reservoirs were divided into 3 
groups: 284 for training, 15 for validation, and 15 for blind 
testing. The resulting ANN is considered good when the 
predicted water saturation of the testing data has an absolute 
error of less than 10% for all values. The structure of the 
ANN was selected after trial and error. The network with the 
lowest error found was the feedforward network. The learning 
function with the lowest error was the gradient descent with 
momentum weight and bias learning function. The training 
function with the lowest error was the conjugate gradient 
backpropagation with Polak-Ribíere updates. The transfer 
functions which showed the lowest error was the hyperbolic 
tangent sigmoid transfer function. The neural network 

structure consists of the input and the output layers and two 
or more hidden layers. In each layer (input, output and 
hidden), the number of neurons must be specified. The 
number of neurons in the input layer is 7. The number of 
neurons in the output layer is 150. A table of 150 neurons is 
required because each column has 15 blocks and the water 
saturation value for a single block was taken at the end of 
each year for 10 years. 
 
 

RESULTS AND DISCUSSION 
 
Vertical well 
 
As explained earlier, in this case, 25 ANN were created. 
They were tested using data from 12 different reservoirs. 
The average absolute error was less than 10% for all the 
layers of all 12 reservoirs. The structure of all the 
networks consists of one input layer, one output layer and 
two hidden layers. For each network, the outputs were 
the water saturation values for the blocks at the end of 
each year, for 10 years. Figure 1 shows the structure of 
the generated ANN for the first layer. The network 
has 6 inputs in the input layer, 46 neurons in the 
fir st hidden layer, 37 neurons in the second hidden 
layer, and 60 outputs in the output layer. The 
average absolute error for each layer of the 
reservoirs is found to be between 0.07 and 1.67%. 
Two reservoirs (reservoir #230 and #233) were 
selected, from the reservoirs used to test the 
generated ANN, to show the capability of the ANN in 
predicting the water saturation. Reservoir #230 has 
the highest average absolute error (Figure 3c), among 
the 12 tested reservoirs, for the predicted water 
saturation values, and reservoir #233 was randomly 
selected. Figure 2a shows the surface map of the 
water saturation distribution for reservoir #233 from 
numerical simulation data. Figure 2b shows the same 
water saturation distribution but with predicted data 
from ANN. The prediction has a very low error, 
and the water cone shape is captured clearly. 
Figure 2c shows the absolute error on a surface map 
to give a better way of visualizing the error and its 
location. The highest error is 5.9% and it is 
observed in a very small area. Figure 3a  is  for  the  
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Figure 1. ANN structure generated for the fi layer for the vertical well. 

 
 
 

 
 

Figure 2. Surface map of Sw for reservoir #233 at the end of the 6th year. 

 
 

 
                          (a) Numerical simulation                                  (b) Artificial neural network 
    

                                     
                                                             (c) Absolute error 
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Figure 3. Surface map of Sw for reservoir #230 at the end of the 5th year. 

 
 
 
surface map for reservoir #230 for the water saturation 
using the data from the numerical simulation. Figure 3b is 
the surface map for the same reservoir using data 
predicted with the ANN. Figure 3c shows the absolute 
error. Prediction for this reservoir has the highest error 
among the 12 reservoirs used for testing, but the shape 
of the cone has developed, which is clearly visible from 
the ANN model. 

 
 
Horizontal well 
 
Twelve ANNs were generated. Each network predicts the 
water saturation for each column. The structure of all the 
networks consists of one input layer, one output layer and 
2 or 3 or 4 hidden layers. The output layer has the water 
saturation values for the blocks at the end  of  each  year, 

for 10 years. 
Figure 4 shows the structure of the generated ANN for 

the first column. The network has 7 input neurons, 31 
neurons in the first hidden layer, 37 neurons in the 
second hidden layer, and 150 neurons in the output layer. 
The average absolute error encountered in the 15 
reservoirs was found to be very low (between 0.34 and 
2.72%). 

Fifteen reservoirs were tested using the neural 
networks developed in this study and two reservoirs were 
selected to illustrate the results of the ANN predictions. 
The two selected reservoirs are reservoirs #8 and #10. 
Figure 5a shows the surface map of reservoir #8 of water 
saturation from numerical simulation. The horizontal well 
is at a depth of 12.5 m and the horizontal section is 1,036 
m long extending from 244 to 1,280 m. Figure 5b  shows 
the   surface   map  of  the  same reservoir   with  water 

 

 
(a) Numerical simulation (b) Artificial neural network 

 

                                 
                                                           (c) Absolute error 
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Figure 4. ANN structure generated for the fi column for the horizontal 
well. 

 
 
 

 
 

Figure 5. Surface map of Sw for reservoir #8 at the end of the 10th year. 

 

 
(a) Numerical simulation (b) Artificial neural network 

 

                                   
                                                                   (c) Absolute error 
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Figure 6. Surface map of Sw for reservoir #10 at the end of the 10th year. 

 
 
 
saturation data predicted from ANN. Figure 5c shows 
the absolute error of the ANN predicted water 
saturation for reservoir #8. 

The ANN was able to predict the shape of water 
crest very effectively. There are areas which show 
an absolute error larger than 10%, but they are all 
at the bottom of the water cone which is not critical 
in performance calculations (Figure 5c). The more 
important areas are those which show where the 
water front has reached. The high error zones 
occur at the transition zones, similar to results of the 
vertical wells, and the high error occurs because 
saturation gradients are high over a small area, 
which creates a greater challenge to the ANN to 
predict the water saturation values accurately. 

The second example to illustrate the ability  of  the 

ANN to predict the water coning phenomena is for 
reservoir #10. Figure 6a shows the surface map of 
water saturation for the reservoir with the numerical 
simulation data, and Figure 6b shows the surface 
map for the same reservoir with the ANN predicted 
data. The ANN was able to predict the cone shape, 
and also to predict the sharp decrease of water 
saturation at the bottom sides of the cone. Figure 6b 
shows two identical peaks. This is an overestimate of 
the water saturation values and this is because the 
horizontal section of the well, which is off the center, 
is having more flow than the center section. The ANN 
was successful in predicting this behavior, but the 
values of water saturation were overestimated. 
Figure 6c shows the absolute error of the ANN 
predicted water saturation for  reservoir  #10,  and  it  

 
 
 

 
        (a) Water saturation from numerical simulation        (b) Water saturation from artificial neural network 
 

                                         
                                                                              (c) Absolute error 
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shows very low error (less than 10%) in most areas. 
 
 
Conclusions 
 
This study is concerned with predicting the rate of 
increase of water saturation in the immediate vicinity 
of the production wells using ANN based models. 
The developed ANNs are for vertical wells located 
in a radial flo w geometry, and horizontal wells located 
in a rectangular reservoir system with active bottom 
water drives. A total of six input parameters are 
needed for the ANN to predict the water saturation 
distribution for a period of 10 years. The predicted 
water saturation values for the vertical well represent 
the water saturation distribution around the wellbore 
at the end of each year while the well is under 
production. In the case of horizontal wells, the 
water saturation predictions are made in the vertical 
plane of symmetry that cuts through the centerline 
of the horizontal well. 

The examples o f  t h e  applications described in 
this paper show that accurate saturation predictions 
matching the numerical simulation results effectively 
have been attained. With the help of the expert 
systems developed in this paper it will be possible 
to generate results showing the development of 
water saturation profiles as a function of time without 
resorting to reservoir simulators which require large 
amount of data and large computational times. 

The developed ANNs can be used to optimize 
production strategies, by running the ANN under 
different production scenarios to find the production 
rate that will effectively delay water production. 
Furthermore, ANN based reservoir models developed 
in this study can be used in selecting the optimum 
perforation interval that will increase production of 
water-free oil by delaying water production or reducing 
it. 
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At present, the effect of different development patterns of interlayer like the length and the longitudinal 
position of interlayer on thermal recovery modes such as steam stimulation (CSS) and steam flooding 
(SF) is still a qualitative understanding, and there is no systematic study yet. Therefore, it is difficult to 
control the thermal production of thick oil reservoirs according to different interlayer patterns. In order 
to quantitatively analyze the influence of interlayer distribution pattern on steam huff and puff and 
steam flooding of horizontal wells in thick heavy oil reservoir, a numerical simulation model was 
established based on typical parameters of LD21 heavy oil reservoir in Bohai in China. Through 
comparison and research on the different modes of development longitudinal position, development 
length and development scale in non-permeable interlayer and semi-permeable interlayer. The influence 
of interlayer on the expansion law of steam chamber and ultimate oil recovery degree during steam huff 
and puff and steam flooding, and the main controlling factors of interlayer influencing oil recovery were 
obtained. The research results can be used for reference to optimize the location of thermal wells in 
thick heavy oil reservoir and reduce the influence of interlayer on thermal production effect of 
horizontal wells. 
 
Key words: Heavy oil reservoir; interlayer; steam huff and puff; steam flooding; recovery. 

 
 
INTRODUCTION 
 
Interlayer mainly refers to the non-permeable or relatively 
low permeability band which can affect the seepage of oil 
and gas in the reservoir (WU et al., 2011). The stable 
interlayer can divide the thick reservoir into several 
relatively independent flow units. At present, injection 
steam for thermal recovery is the main way to improve oil 
recovery in heavy oil reservoirs (Wang et al., 2006; Zhu 
et al., 2011; Liu et al., 2012; Ajay, 2012; Huang et al., 
2013; Khansari et al., 2014;Liu, 2015; Liu et al., 2015; 
Sheikholeslami et al., 2016; Hou et al., 2016; Yang et al., 
2016; Ma and Liu, 2018; Zhong et al., 2015;  Xiong et  al., 

2017). Interlayer affects fluid seepage by affecting the 
development and expansion of steam chamber (Zhou et 
al., 2006; Wang et al., 2009), which has a vital impact on 
the thermal effect of thick heavy oil reservoirs. Previous 
researchers have studied the quantitative identification 
criteria of different types of interlayer by using core data 
and logging data of coring wells. Through identification, 
interlayer can be divided into three types: shaly interlayer, 
calcareous interlayer and physical interlayer (Ma 2017; 
Yan and Duan, 2008). The stable distribution of interlayer 
is  a  positive  significance  to  oil  and  gas  development,  
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Table 1. Fluid parameters of Guan IV Formation in LD21 heavy oil reservoir. 
 

Parameter name 
Parameter 

values 
Parameter name 

Parameter 
values 

Buried depth of oil reservoir /m 1500 
Thermal conductivity of upper and lower 
caprock / J• (m•day•C) )

-1
 

1.06×10
3
 

Original average formation pressure /MPa 14.7 Reservoir temperature /℃ 54 

Rock compressibility /kPa
-1

 2.5×10
-5

 Vertical to horizontal permeability ratio 0.3 

Volumetric heat capacity of rock /J• (m3•C)
-1

 2.575×10
6
 Reservoir thickness /m 42.9 

Thermal conductivity of rock / J• (m•day•C) )
-1

 1.634×10
5
 Average permeability of formation /m 3109 

Thermal conductivity of oil / J• (m•day•C) )
-1

 9.77×10
3
 Average porosity of formation 0.33 

Thermal conductivity of water / J• (m•day•C) )
-1

 5.99×10
4
 Degassing oil density / g•cm

-3
 0.98 

Thermal conductivity of gas / J• (m•day•C) )
-1

 1.9×10
3
 Formation oil viscosity /mPa•s 2908 

Volumetric heat capacity of upper and lower 
caprock /J• (m

3
•C)

-1
 

2.2×10
6
 Original oil saturation /% 62 

Volumetric heat capacity of interlayer /J• (m
3
•C)

-1
 1.6×10

6
 

Thermal conductivity of interlayer / J• 
(m•day•C) )

-1
 

0.55×10
5
 

 
 
 
such as the top interlayer can prevent steam overlap 
upward, the bottom interlayer can prevent bottom water 
coning and so on, while the unstable interlayer are 
surrounded by more residual oil distribution, which is not 
conducive to development (Zhong, 2012). Some scholars 
take actual oilfield as an example to study the influence 
of interlayer on development effect in the process of 
steam huff and puff, steam flooding after huff and puff, 
steam-assisted gravity drainage, and obtain the 
qualitative understanding of interlayer on thermal effect 
(Tang, 1995; Li, 2016). Generally speaking, the study on 
the effect of interlayer on thermal horizontal wells is not 
very detailed; the range of interlayer is a qualitative 
understanding, which cannot meet the requirement of 
CSS and SF. In CSS and SF process, interlayer length 
and interlayer longitudinal position are very important in 
thick heavy oil reservoirs, which can decide the well 
location. In order to quantitatively analyze the influence of 
interlayer distribution pattern on steam huff and puff and 
steam flooding of horizontal wells in thick heavy oil 
reservoir, longitudinal position, development length and 
development scale in non-permeable interlayer and semi-
permeable interlayer were researched. The research 
results can be used for reference to optimize the location 
of thermal wells in thick heavy oil reservoir and reduce 
the influence of interlayer on thermal production effect of 
horizontal wells. 
 
 
The establishment of theoretical model 
 
The main oil-bearing layer of LD21 heavy oil reservoir is 
Guantao Formation in Bohai, of which Guan IV Formation 
is a layered edge water reservoir with high oil viscosity 
(formation oil viscosity 2908 mPa·s), deep reservoir 
(1500 m), good reservoir physical properties (logging 
porosity 33.2%, logging permeability 2145mD), thick 

reservoir (single layer thickness 16 ~ 40 m). The energy 
of water is stronger (volume multiplier of water to oil is 
4~11 times). By analyzing the geological reservoir 
characteristics of Guan IV Formation of LD21 heavy oil 
reservoir in Bohai oilfield, a basic model is established 
without interlayer. The fluid parameters and geological 
parameters used in the model are shown in Table 1. 

Using the STARS simulator of CMG software, the grid 
size in I and J directions are both 20m and is 1.3m in K 
direction in the model. The number of grids in I direction 
and J direction is 23 and 20, respectively. The number of 
grids in K direction is 33. The total number of simulated 
grids is 23×20×33=15180. Longitudinally, it is composed 
of a set of oil layers. The 1

st
 to 33

rd
 layers are oil layers 

from top to bottom. The effective thickness of oil layers is 
42.9 m. Three horizontal wells are located in the middle 
of the reservoir, 100m from the edge, perforation length 
of horizontal section t is 300m, and the well spacing is 
200 m (Figure 1). 

Three wells are injected steam huff and puff at the 
same time. The daily steam injection rate of a single well 
is 300 m

3
/d, the cyclic steam injection is 4500 m

3
, the 

bottom hole steam injection temperature is 340°C, the 
bottom hole steam quality is 0.4, keep the wells shut for 5 
days after steam injection. Oil wells are simulated by 
three-stage control conditions: the first control condition is 
constant maximum liquid (150m

3
/d), the second control 

condition is constant pressure drop (4 MPa), and the third 
control condition is constant minimum bottom flow 
pressure (3 MPa). Simulated two production processes: 
three wells injected steam huff and puff for seven rounds 
at the same time, and then the intermediate horizontal 
well H2 changed for steam injection, a single well daily 
steam injection is 300 m

3
/d, bottom hole steam injection 

temperature is 340°C, bottom hole steam quality is 0.6. 
This model can be used for injection steam development 
of the well pattern of 1 injection 2 production; the well is 

https://link.springer.com/article/10.1007/s12517-018-3793-y#CR16
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Figure 1. Schematic diagram of a typical well group numerical model l for (a) well location, (b) 
Original oil saturation field (Soi=0.62). 

 
 
 

Table 2. Numerical simulation design. 
 

influence 

factors 

Whether interlayer  
distributed 

Specific value 
Test 

Number 

Vertical position of horizontal well No Upper part , middle part, Lower part 6 

Non dimensional position of 
interlayer 

Yes 0.13, 0.25, 0.38, 0.50, 0.63, 0.75,0.88,1.00 16 

Non dimensional length of 
interlayer 

Yes 0.06,0.18,0.29,0.41,0.53,0.65,0.76 14 

Development scale of interlayer Yes 
Whole region distribution, Upper local distribution, 
Lower local distribution 

6 

 
 
 

shut-in until the entire oil field's instantaneous oil-gas 
ratio is below 0.15 (Table 2). 
 
 

The design of test scheme  
 
The permeability of different lithologic interlayers varies 
greatly, and the mudstone type has the strongest ability 
to seal fluid (vertical permeability is less than 1×10

-3
µm

2
), 

the calcareous sandstone type is next (vertical 
permeability is less than 2×10

-3 
µm

2
), and the mixed 

sandstone and oil stain sandstone have the worst ability 
to seal fluid (vertical permeability is less than 60×10

-3 

µm
2
) (Tang, 1995). The type of interlayers used in this 

paper is non-permeable and semi-permeable, and the 
corresponding permeability is 0.000×10-3 μm

2
 and 

0.001×10
-3 

µm
2
 respectively. The schema is shown in 

Table 2. 
The dimensionless position of interlayer is defined as 

the vertical distance between interlayer and horizontal 
well divided by the distance between horizontal well and 
reservoir top. The expression is as follows: 

 

I HDi m
D D D                                                                     (1)  

In the formula,
I

D  is for the vertical distance between the 

interlayer and the horizontal well, m; 
H

D is for the vertical 

distance between the horizontal well and the top of the 
reservoir, m. 

The dimensionless length of the interlayer is defined as 
the length of the interlayer divided by the length of the 
reservoir in the plane. The expression is as follows: 
 

I HDi m
L L L                                                                     (2) 

 

In the formula,
I

L is the length of the interlayer, m;
H

L is 

the length of the reservoir, m. 
 
 

Analysis of heating chamber expansion rule and 
development effect  
 
Based on the above models and schemes, the 
development effects of steam huff and puff and steam 
flooding after steam huff and puff under different modes, 
such as vertical position of horizontal wells, 
dimensionless position of interlayer, and dimensionless 
thickness of interlayer and interlayer development scale  

 

 (a)                                                        (b)          
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Figure 2. Influence of vertical position of horizontal well for (a) vertical location diagram, (b) development indicator diagram 
of different locations. 

 
 
 
are researched respectively. 
 
 
The influence of vertical position of horizontal wells 
 
In order to determine the basic model, the best well 
location of thick and heavy oil reservoirs without 
interlayer development is researched. As shown in Figure 
2a, three horizontal wells are deployed in the upper, 
middle and lower parts of the reservoir to obtain the oil 
recovery at the huff and puff stage and at the end of 
displacement, as shown in Figure 2. The results show 
that when the three wells are located in the middle of the 
reservoir simultaneously, the recovery degree of huff and 
puff stage and steam flooding stage reaches the 
maximum of 28.1% and 65.8%. 
 
 
Dimensionless position of interlayer 
 
The distance of interlayer and the vertical position of 
horizontal well affect the distribution and expansion of 
steam, and ultimately affects the heating range and oil 
displacement range, thus affecting the thermal recovery 
effect. Figure 3 is a comparison of the temperature field 
at the end of steam flooding after huff and puff at different 
interlayer positions (K = 13/33, K = 9/33, K = 5/33), the 
corresponding dimensionless interlayer positions (0.25, 
0.50, 0.75). 

Figure 3 shows that the non-permeable interlayer and 
permeable interlayer have different effects on the heating 
range. As shown in Figure 3a, for such non-permeable 
interlayer as argillaceous interlayer, it is difficult for the 
injected steam to enter the upper part of the interlayer, 

resulting in a lower temperature in the upper part of the 
interlayer at the end of development. For such semi-
permeable interlayer as physical interlayer, the injected 
steam can heat the upper part of the interlayer, and the 
temperature increases significantly at the end of 
development, as shown in Figure 3b. It can be seen that 
for heat conduction and convection, the semi-permeable 
interlayer slows down the heat transfer, and the heat 
transfer performance is better than the non-permeable 
interlayer. 

Figure 4 compares the remaining oil saturation at the 
end of steam flooding development at different interlayer 
positions. As shown in Figure 4a, for a non-permeable 
interlayer, there is obvious residual oil accumulation area 
at the upper part of the interlayer, indicating that the 
interlayer prevents fluid flow in the upper part of the 
interlayer. For a semi-permeable interlayer, the upper 
part of the interlayer is available, showing that the 
remaining oil saturation is lower than the original oil 
saturation, as shown in Figure 4b. It can be seen that the 
reservoirs located at the upper and lower parts of the 
semi-permeable interlayer can contribute to the oil 
production. 

Figure 5 is a development index for different interlayer 
positions. Figure 5a shows that with the increase of 
dimensionless position of interlayer, the recovery degree 
increases gradually in huff and puff stage. Figure 5b 
shows that the recovery degree increases first and then 
decreases at the end of steam flooding whether it is non-
permeable interlayer or semi-permeable interlayer. When 
the development position of interlayer changes from 
K=13/33 to K=5/33, the oil recovery degree of CSS 
increases from 26.3 to 27.7%. For steam flooding, the 
final recovery degree tends to be consistent. 

  

(a)                                                           (b) 
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Figure 3. Temperature field at the end of steam flooding of different interlayer locations 
for (a) Non-permeable Interlayer, (b) Permeable Interlayer. The red area is heated oil, 
the blue area is not heated oil. 

 
 
 

 
 

Figure 4. Remaining oil saturation field at the end of steam flooding of different interlayer 
locations for (a) Non-permeable Interlayer, (b) Permeable Interlayer. The blue area is less 
remaining oil saturation, the red area means larger remaining oil saturation. 

 

(a)                                                                 (b) 

 

(a)                                                                (b) 
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Figure 5. Development indicators of different interlayer locations for (a) cycle steam stimulation for 7 cycle, (b) 
after steam flooding. 

 
 
 

 
 

Figure 6. Temperature field at the end of steam flooding of different interlayer 
lengths for (a) Non-permeable Interlayer, (b) Permeable Interlayer. The red area is 
heated oil, the blue area is not heated oil. 

 
 
 
The dimensionless length of interlayer 
 
The dimensionless length of interlayer affects the 
distribution and expansion of steam, and affects the 
heating range and oil displacement range, thus affecting 
the thermal recovery effect. Figure 6 is a comparison 
chart of temperature field at the end of  steam  drive  after 

huff and puff with different interlayer lengths (L= 3, L= 9, 
L= 15), corresponding dimensionless interlayer lengths 
(0.18, 0.53, 0.88). 

Figure 6 shows that the longer the interlayer develops, 
the more obvious the compression of the heating range 
and the wider the lateral expansion range of the steam 
injection. When the interlayer is short, the injected  steam  

  

(a)                                       (b) 

 

(a)                                       (b) 
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Figure 7. Remaining oil saturation field at the end of steam flooding of different interlayer 
lengths for (a) Non-permeable Interlayer, (b) Permeable Interlayer. The blue area is less 
remaining oil saturation, the red area means larger remaining oil saturation. 

 
 
 

 
 

Figure 8. Development indicators of different interlayer lengths for (a) cycle steam stimulation 
for 7 cycle, (b) after steam flooding 4.4 development scale of interlayer. 

 
 
 

mainly extents to the top of the reservoir and then 
expands laterally; when the interlayer is long, the injected 
steam quickly reaches the top of the interlayer, and then 
expands laterally, increasing the lateral sweep volume. 
For non-permeable and semi-permeable interlayer, the 
vertical sweep coefficient of semi-permeable interlayer is 
higher, while the transverse sweep range is smaller. The 
difference of heating mode will lead to the difference 
between the seepage law of oil and the distribution of 
remaining oil. 

Figure 7 compares the remaining oil saturation  field  at  

the end of the development of steam drive with different 
interlayer lengths. As shown in Figure 7a, for a non-
permeable interlayer, there is obvious residual oil 
accumulation area at the upper part of the interlayer, 
indicating that the interlayer prevent fluid flow in the 
upper part of the interlayer. For a semi-permeable  
interlayer, the upper part of the interlayer is available, as 
shown in Figure 7b. 

Figure 8 is a development index for different interlayer 
lengths. Figure 8a shows that with the increase of 
dimensionless length of  interlayer,  the  recovery  degree  

 

 

(a)                                       (b) 

 

(a)                                                                                    (b) 
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Figure 9. Permeability, formation temperature, remaining oil saturation field diagram comparison 
at the end of steam flooding of different interlayer development scales for (a) Permeable 
interlayer distributed in whole region, (b) Non-permeable interlayer distributed in partial region. 

 
 
 
decreases gradually in huff and puff stage whether it is 
non-permeable interlayer or semi-permeable interlayer. 
When the dimensionless length of interlayer increases 
from 0.06 to 1.00, the recovery degree decreases from 
28.3 to 26.0% during huff and puff stage. For steam 
flooding after huff and puff, the recovery degree of semi-
permeable interlayer decreases from 67.5 to 61.7%, 
while the recovery degree of non-permeable interlayer 
first decreases and then keep stable.  

Figure 9 is a comparison of permeability field, formation 
temperature field and residual oil saturation field of 
different interlayer development scale. It can be seen that 
the different development scale of interlayer affects the 
distribution of temperature field and remaining oil 
saturation field. Figure 10 (a) shows that for huff and puff 
development, the recovery degree of non-permeable 
interlayer is slightly higher than permeable interlayer. The 
main reason is that the heating range of huff and puff is 
limited, and the influence of interlayer is not obvious. 
However, with the development of production, the 
recovery degree of non-permeable interlayer is lower 
than permeable interlayer while steam flooding after huff 
and puff. Especially when the interlayer is distributed at 
the  bottom  or  in  the   whole   area,   the   difference   of  

recovery degree between them is 3.2-3.8%. 
 
 
The influence of interlayer development on well 
location design 
 
In the case of interlayer distributed in the whole area, 
there are three well distribution modes: 1) vertical well 
passes through one set of interlayer; 2) directional well 
obliquely passes through two sets of interlayer; 3) 
horizontal well deployed between two sets of interlayer, 
as shown in Figure 11. 

Table 3 is the recovery degree of huff and puff stages 
and the end of steam drive at different well location 
pattern. Table 3 shows that the more passing through the 
interlayer, the better the development effect for 
directional well development. The recovery degree of 
directional well passing through two sets of interlayer is 
higher than that vertical well passing through one set of 
interlayer. Directional well can get 5.6 percentage point 
and 3.4 percentage point higher oil recovery than that of 
vertical well for huff and puff and steam flooding, 
respectively. Horizontal wells have the best recovery 
effect, and the recovery degree can reach  28.9%  in  huff  

 

(a)                                                                               (b) 
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Figure 10. Development indicators of different interlayer models for (a) cycle steam stimulation for 7 cycle, (b) after steam flooding. 

 
 
 

 
 

Figure 11. Different well type of interlayer distributed in whole region for (a) vertical well, (b) directional well, (c) horizontal well. 

 
 
 
Table 3. Comparison of recovery degree for different well pattern of interlayer distributed in the whole area. 
 

Case name 
Pass through interlayer 

Steam 
injection 

rate 

Injection-
production 

ratio 

Huff and 
puff stage 

recovery 
degree 

Steam 
drive end 

recovery 
degree 

Recovery 
degree 
added 
value 

/ /（m
3
/d） / /% /% /% 

Vertical well Pass through one set of interlayer 300 1.2 15.0 43.5 / 

Directional well Pass through two sets of interlayer 300 1.2 20.6 46.9 3.4 

Horizontal well Not pass through interlayer 300 1.2 28.9 59.7 16.2 

 

   (a)                                                                             (b) 
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and puff stage, 59.7% at the end of steam flooding. It can 
get 13.9 percentage point and 16.2 percentage point 
higher oil recovery than that of vertical well for huff and 
puff and steam flooding, respectively.  
 
 
CONCLUSION AND RECOMMENDATIONS 
 
(1) When there is no interlayer, the horizontal wells are 
located in the middle of the reservoir, the recovery 
degree of the huff and puff stage and steam drive stage 
reaches the maximum of 28.1% and 65.8% respectively. 
Therefore, it is suggested that thermal recovery 
horizontal wells should be deployed in the middle part of 
reservoirs for the reservoir of no interlayer. 
(2) Mudstone interlayer (non-permeable interlayer) and 
physical interlayer (semi-permeable interlayer) have 
different effects on thermal recovery. For the semi-
permeable interlayer, the upper part of the interlayer can 
be developed, but the non-permeable interlayer cannot 
be developed. 
(3) With the increase of dimensionless position of the 
interlayer, the recovery degree increases gradually in huff 
and puff stage, and the recovery degree increases first 
and then decreases at the end of steam flooding whether 
it is non-permeable interlayer or semi-permeable 
interlayer. 
(4) The longer the interlayer develops, the more obvious 
the compression of the heating range and the wider the 
lateral expansion range of the steam injection. When the 
dimensionless length of interlayer increases from 0.06 to 
1.00, the recovery degree decreases from 28.3 to 26.0% 
during huff and puff stage. For steam flooding, the 
recovery degree of physical interlayer decreases from 
67.5 to 61.7%. 
(5) For two sets of discontinuous interlayers, horizontal 
wells are the best, directional wells are the second and 
vertical wells are the worst. For directional wells, the 
more interlayers are passed through by directional wells, 
the effect is the better. 
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